

RADICAL TELOMERIZATION OF 1-HEXENE BY 1,4-DIOXANE

D. É. Kruglov, O. G. Safiev,
S. S. Zlot-skii, and D. L. Rakhmankulov

UDC 547.313'841:542.953.1:543.422.25'51

It was established that telomer homologs of a number of 2-alkyl-1,4-dioxanes are formed as a result of radical telomerization of 1-hexene by 1,4-dioxane. The partial chain-propagation constants of the process were calculated, and the mass spectra of the reaction products were studied.

Numerous studies [1, 2] have been devoted to reactions involving the radical telomerization of lower olefins by various organic compounds. However, virtually no information regarding the telomerization of unsaturated hydrocarbons by cyclic ethers is available.

We have established that telomer homologs of a series of 2-alkyl-1,4-dioxanes (III_n) are formed as a result of telomerization of 1-hexene (II) by 1,4-dioxane (I) initiated by tert-butyl peroxide (TBP):

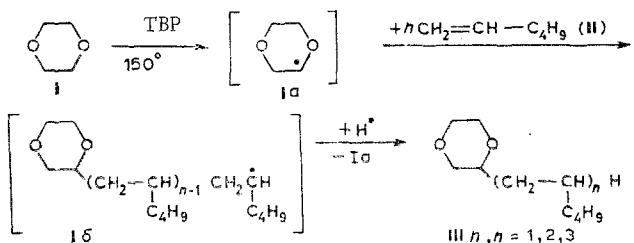
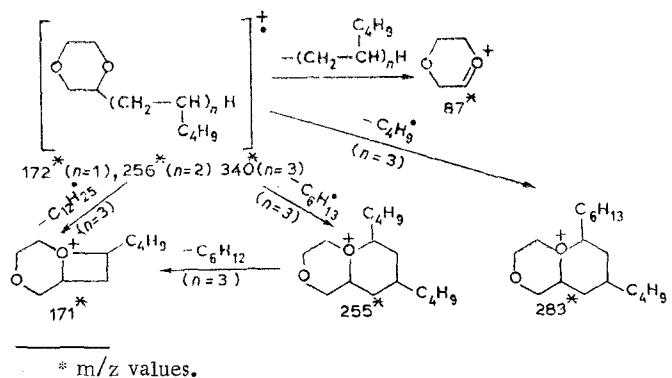


TABLE 1. Balance of the Radical Telomerization of 1-Hexene by 1,4-Dioxane (150°C, 1 h, 0.6 mmole of TBP)

Charge, mmole		Consumed, mmole		Formed, mmole		
1,4-dioxane	1-hexene	1,4-dioxane	1-hexene	III ₁	III ₂	III ₃
11,4	2,4	0,7	0,9	0,5	0,1	0,1
11,3	4,7	1,3	2,1	0,9	0,4	0,2
11,4	5,5	1,5	2,1	0,8	0,3	0,2


TABLE 2. Partial Chain Propagation Constants in the Radical Telomerization of 1-Hexene (II) by 1,4-Dioxane (I) (150°C, 1 h, [TBP] = 3.2%)

Initial charge, mmole	I	II	Conversion		Amounts of telomer homologs III _n , mole				Partial chain-propagation constants C			
			K _{II} *, %	K _I *, %	K _{II} /K _I	III ₁	III ₂	III ₃	III _{n>3}	C ₁	C ₂	C ₃
11,35		1,21	39	8	0,09	82	12	4	2	0,36	0,19	0,18
11,36		2,38	40	6	0,17	66	21	8	5	0,33	0,26	0,26
11,26		3,50	40	7	0,25	60	17	11	12	0,40	0,20	0,22
11,30		4,71	44	7	0,33	56	18	10	16	0,45	0,24	0,24
11,36		5,47	39	15	0,41	54	18	11	17	0,49	0,27	0,27
Arithmetic-mean values of partial constants C _n								0,41		0,23	0,23	
Arithmetic-mean error								0,05		0,03	0,03	

TABLE 3. Physicochemical Constants and Mass Spectra of the Reaction Products

Compound	n _D ²⁰	d ₄ ¹⁰ (mm)	bp, °C	Found, %		Empirical formula	Calc., %		Mass spectrum, m/z (relative intensity, %)			
				C	H		C	H	C	H		
III ₁	1,4412	0,918	77-79 (2)	70,16	11,32	C ₁₀ H ₂₀ O ₂	69,70	11,72	43 (33,6), 44 (23,3), 55 (18,2), 57 (14,8), 59 (16,4), 70 (18,0), 87 (100,0), 97 (10,7), 113 (6,3), 172 (8,1)			
III ₂	1,4529	0,896	120-122 (1)	74,26	12,98	C ₁₆ H ₃₂ O ₂	74,92	12,60	43 (44,7), 45 (21,7), 55 (36,6), 57 (39,1), 59 (29,8), 87 (100,0), 97 (16,2), 137 (15,7), 171 (17,9), 194 (18,7), 256 (1,2)			
III ₃	—	—	—	—	—	—	—	—	43 (58,1), 45 (6,4), 55 (30,9), 57 (39,5), 59 (32,4), 69 (18,6), 71 (22,0), 73 (17,4), 87 (22,9), 141 (41), 171 (100), 255 (62,3), 283 (6,8)			

dissociation of the molecular ion at the exocyclic bond, are characteristic for these compounds. Low-intensity molecular-ion peaks with masses of 172 and 256, respectively, are observed in the mass spectra of telomers III₁ and III₂. The remaining ions are evidently formed as a result of the successive splitting out of hydrocarbon fragments from the molecular ion. On the basis of the data obtained, the following scheme of the fragmentation of III_n under the influence of electron impact can be proposed:

In addition, peaks of hydrocarbon ions (43, 55, 57, etc.) are intense in the mass spectra of telomer homologs III_n .

EXPERIMENTAL

Telomerization was carried out in thick-walled ampuls by the method described in [5] at 150°C for 1 h.

The mass spectra were obtained with a Finnigan-4021 chromatographic mass spectrometer with a glass capillary column (5 m, SE-30); the ionizing voltage was 70 eV, and the source temperature was 250°C . The PMR spectra of solutions of the compounds in CCl_4 were obtained with a Tesla BS-497 spectrometer (100 MHz) with hexamethyldisiloxane as the external standard. The reaction products were isolated by preparative GLC with a PAKhV-08 chromatograph with a catharometer; the carrier gas was helium, the flow rate was 3.6 liters/h, and the 1200 by 9 mm column was packed with 20% SKFT-50 on Chromaton N-AW. Quantitative analysis of the reaction products was carried out by the GLC method on the Tsvet-152 device (catharometer, gas carrier was helium at flow rate 3.0 liter/h, column 3000×4 mm was packed with 20% SKFT-50 on chromaton N-AW).

LITERATURE CITED

1. P. Kh. Freidlina and A. B. Terent'ev, *Acc. Chem. Res.*, No. 10, 9 (1977).
2. F. K. Velcihko, T. T. Vasil'eva, R. G. Petrova, and A. B. Terent'ev, *Zh. Vses. Khim. Ova.*, No. 2, 83 (1979).
3. P. R. Mayo, *J. Am. Chem. Soc.*, 70, 3689 (1948).
4. V. P. Nayanov, V. V. Zorin, A. B. Terent'ev, S. S. Zlot-skii, and D. L. Rakhmankulov, *Zh. Obshch. Khim.*, 12, 1398 (1976).
5. B. A. Englin, B. N. Osipov, and R. Kh. Freidlina, *Izv. Akad. Nauk SSSR, Ser. Khim.*, No. 8, 1736 (1967).